
Relativistic effects on the structural phase stability of molybdenum

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 3237

(http://iopscience.iop.org/0953-8984/11/16/005)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 07:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 3237–3246. Printed in the UK PII: S0953-8984(99)00908-X

Relativistic effects on the structural phase stability of
molybdenum

J C Boettger
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 12 January 1999

Abstract. The relative stabilities of the fcc, bcc, and hcp structures of molybdenum (Mo) are
studied as functions of volume with both nonrelativistic and scalar-relativistic linear combinations
of Gaussian-type orbitals (LCGTO) fitting function calculations. Relativity is shown to have a
significant effect on the bcc–fcc structural energy difference that first increases, then decreases,
with pressure, but has only a negligible effect on the hcp–fcc structural energy difference. The
scalar-relativistic bcc–fcc energy difference curve obtained here is in good agreement with an earlier
fully relativistic calculation using the all-electron full-potential linear muffin-tin orbital method.
Unlike previous theoretical work, this investigation finds no region of hcp phase stability atT = 0.
Instead, the bcc phase transforms directly into the fcc phase at a pressure of about 6.6 Mbar.

1. Introduction

The linear combinations of Gaussian-type orbitals (LCGTO) technique is the most widely used
electronic structure method in existence today. The great popularity of the LCGTO method is
a natural consequence of its wide range of applicability and its conceptual simplicity. Since
GTO basis functions are short ranged and atom centred, the LCGTO method is applicable to
any multi-atom system, regardless of spatial symmetry. Thus, the LCGTO method is able
to treat isolated clusters of atoms, polymer chains, thin films, and crystalline solids on an
equal footing—thereby bridging the often wide gap between solid-state physics and quantum
chemistry. The simple form of the GTO basis functions allows all four-centre Coulomb
integrals to be calculated analytically, making it possible to carry out LCGTO calculations
using density functional theory (DFT), Hartree–Fock theory (with or without correlation), or
some mixture of the two (the hybrid method). Finally, the fact that GTOs are exponentially
local in both real and reciprocal space makes them attractive candidates for basis functions to
be used in linear scaling methods. Thus, the LCGTO method may be viewed, to some extent,
as a ‘universal’ electronic structure methodology.

One long-standing disadvantage of the LCGTO technique relative to the numerical-orbital-
based DFT electronic structure techniques often employed in solid-state physics, such as the
full-potential linear augmented-plane-wave (FLAPW) method and the full-potential linear
muffin-tin orbital (FLMTO) method, has been the lack of a stable technique for incorporating
relativistic effects during all-electron calculations on systems that include heavy atoms—an
affliction shared by most fixed-basis-set methods [1]. This limitation effectively restricts
all-electron LCGTO calculations to systems formed from atoms in the first three rows of
the periodic table—i.e., less than half of all atoms. Although a number of strategies have
been suggested for incorporating relativistic effects into fixed-basis-set calculations [1], most
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practical LCGTO calculations for heavy-atom systems still rely on some form of relativistic
pseudopotential.

In recent years, considerable progress has been made toward developing a computationally
tractable relativistic LCGTO method. One particularly fruitful line of research has been based
on the so-called Douglas–Kroll–Hess [2–4] (DKH) transformation. As early as 1986, B A
Hess was carrying out scalar-relativistic LCGTO Hartree–Fock calculations on molecular
systems [3]. A few years later, Häberlen and R̈osch [5] demonstrated the feasibility of
carrying out scalar-relativistic LCGTO DFT calculations on heavy-atom clusters using a
simplified ‘incomplete’ DKH transformation. In 1997, Geipel and Hess [6] published the
first all-electron, scalar-relativistic, Hartree–Fock LCGTO calculation for a crystalline solid,
using a modified version of the program CRYSTAL88 [7]. The first scalar-relativistic DFT
LCGTO calculation for a solid was published the next year [8], using the LCGTO fitting
function (LCGTO-FF) method [9, 10], as implemented in the program GTOFF [11]. These
developments have established the all-electron, scalar-relativistic LCGTO method, based on
the DKH transformation, as a viable technique for studying local and extended heavy-atom
systems utilizing either Hartree–Fock or DFT theory—or, by extension, hybrid methods.

In the present work, the new scalar-relativistic version of GTOFF [8] is used to study the
effect of relativity on the equation of state and structural phase stability of Mo. Since Mo
is a standard test case for crystalline electronic structure techniques, numerous calculations
of its zero-pressure properties [12–18], both relativistic and nonrelativistic, are available for
comparison. In addition, the structural phase stability of Mo has been studied with at least
one high-precision, all-electron, relativistic DFT technique: the full-potential linear muffin-tin
orbital (FLMTO) method [19]. Thus the current investigation provides an important test of
the scalar-relativistic LCGTO-FF method on a rather subtle relativistic effect [20].

The scalar-relativistic LCGTO-FF method will be reviewed in the following section. In the
third section, the basis sets used here and a few other computational details will be discussed.
The results obtained here for the zero-pressure properties, equation of state, and structural
phase stability of Mo will be presented and compared with previous calculations in the fourth
section. A few concluding remarks will be given in the final section.

2. The scalar-relativistic LCGTO method

The development of the scalar-relativistic LCGTO-FF method used here begins with the four-
component Dirac–Kohn–Sham (DKS) equations [21]:

h
(4)
DKSψi =

[
(cα · p + βmc2) + veff

]
ψi = εiψi (1)

where

veff = vn + vc + vxc (2)

is the effective one-electron potential formed from the nuclear potentialvn, the classical
electronic Coulomb potentialvc, and the DFT exchange–correlation (XC) potentialvxc. The
eigenvalues of the DKS equations are unbounded, above and below, since they include both
electron and positron degrees of freedom. Therefore, any attempt to solve the DKS equations
variationally will lead to the ‘variational collapse’ problem, unless the freedom of the basis
set used is carefully restricted [1]. (For example, solid-state electronic structure techniques
like the FLAPW and FLMTO methods use numerical basis functions that are constructed to
be electronic solutions for a muffin-tin potential, effectively restricting the variational freedom
of the basis.) The variational collapse problem can also be circumvented by performing
some unitary transformation on the DKS equations that approximately decouples the electron
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and positron degrees of freedom. For example, it is well known that the DKS equations
can be decoupled to arbitrary order in(p/mc)2 via a series of Foldy–Wouthuysen [22]
transformations. Unfortunately, the Foldy–Wouthuysen procedure produces operators that
are highly singular at the nucleus, and are hence not amenable to an all-electron variational
solution.

An alternative approach, which does not generate singular operators, uses the DKH trans-
formation [2–4] to decouple the DKS equations to second order in the external field,veff . This
procedure yields the two-component, external-field projector (EFP) equation:

h
(2)
EFP φi = εiφi
h
(2)
EFP = Ep +Ap

[
veff +Rpveff Rp

]
Ap − 1

2
(EpW

2 +W 2Ep + 2WEpW)
(3)

where

Ep = c(p2 +m2c2)1/2. (4)

Also,

Ap =
[
Ep +mc2

2Ep

]1/2

(5)

Rp = Kpσ · p (6)

Kp = c/(Ep +mc2) (7)

andW can be expressed in momentum space as

Wp,p′ = Ap(Rp − Rp′)Ap′
[
veff (p,p

′)
Ep +Ep′

]
(8)

whereveff (p,p′) is the momentum-space representation ofveff . As written, the EFP equations
are fully relativistic, in the sense that they include mass–velocity, Darwin, and spin–orbit
coupling corrections. Throughout the remainder of this work, it will be assumed that all of
the spin–orbit coupling terms in equation (3) are neglected to obtain the scalar-relativistic EFP
approximation. (A detailed discussion of the separation of the relativistic corrections into
scalar-relativistic and spin–orbit coupling terms has been presented elsewhere [23] and will
not be repeated here.)

Analytical evaluation of the GTO matrix elements for the momentum-space operators in
equation (3) has not proven to be practical thus far. This difficulty can be circumvented by using
an approximate momentum-space representation obtained by diagonalizing the nonrelativistic
kinetic-energy matrix [24]. First, the matrix elements ofp ·vp andp×vp (which are required
even for scalar-relativistic EFP calculations) are evaluated along with the usual nonrelativistic
matrix elements. Next, the nonrelativistic kinetic-energy matrix is diagonalized to obtain
approximate eigenfunctions ofp2 and all of the matrices are transformed to this approximate
momentum space. Since the operatorsEp,Ap, andKp are diagonal in momentum space, they
can be obtained trivially from thep2-eigenvalues. These basic components are then used to
build the more complicated matrix elements needed, such asApRpvRpAp. Finally, all of the
matrices are back-transformed to the original GTO representation.

The most serious drawback to the procedure described above is the fact that the relat-
ivistic corrections to the two-electron and exchange–correlation integrals are very demanding
computationally. Fortunately, these corrections are quite small and can be neglected in most
practical calculations [5,6,8]; this is the nuclear-only approximation. Häberlen and R̈osch [5]
achieve a further reduction in the resources required for their calculations by dropping all terms
in the nuclear-only EFP equation that requirep× vnp; this is the HR approximation. A recent
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series of test calculations on isolated atoms [23] found that the HR approximation produces
one-electron eigenvalues for the chemically active valence states that differ little from those
obtained with the complete scalar-relativistic Douglas–Kroll–Hess transformation. This then
is the version of scalar relativity implemented in GTOFF.

The nuclear-only approximation introduces one additional difficulty that is unique to
extended system calculations. Solid-state electronic structure codes typically make use of
charge neutrality to ensure that the Coulomb lattice sums converge, a constraint that is not
satisfied for the relativistic corrections to the nuclear-only Coulomb integrals. Geipel and
Hess [6] resolve this difficulty by taking advantage of the anticipated short range of the
relativistic corrections; i.e., they simply carry out the lattice sums over a fixed number of
neighbour sites and assume that the correction terms will be converged. GTOFF uses a different
approach that explicitly includes the long-range contributions to the corrections and converges
all of the lattice sums. This is accomplished by making use of the fact that the contributions
of veff (0, 0) to the relativistic corrections in equation (3) cancel exactly. Thus, the relativistic
corrections can be obtained by embedding the nuclear lattice in a neutralizing, uniform electron
gas and then using a generalized Ewald procedure to calculate the lattice sums to high precision.

3. Computational details

The LCGTO-FF technique is distinguished from other electronic structure methods by its
use of three independent GTO basis sets to expand the orbitals, charge density, and local
density approximation (LDA) exchange–correlation (XC) integral kernels—here using the
LDA parametrization of Hedin and Lundqvist (HL) [25]. The charge fitting functions are used
to reduce the total number of Coulomb integrals by replacing the usual four-centre integrals
in the total-energy and one-electron equations with three-centre integrals. The charge fitting
function coefficients are determined by minimizing the error in the Coulomb energy due to
the fit [26]; this allows high-precision calculations with relatively small basis sets. The least
squares XC fit used here acts as a simple yet sophisticated numerical quadrature scheme capable
of producing accurate results with a rather coarse numerical integration mesh. The precision
of any LCGTO-FF calculation will, of course, be largely determined by the selection of these
three basis sets.

The orbital basis set used here for volumes near ambient was derived from Huzinaga’s
17s11p8d atomic basis [27] by replacing the five most diffuse s-type GTOs with more local
basis functions, augmenting the p-type basis with one diffuse GTO, and adding two f-type
polarization functions. The resulting 17s12p8d2f crystalline basis set was then reduced to a
13s8p5d2f basis set by contracting the most local GTOs of eachl-type using atomic orbital
coefficients from nonrelativistic or scalar-relativistic atomic calculations. The charge density
and the XC integral kernels were fitted with a single 15s GTO basis set, selected on the basis
of prior experience with LCGTO-FF calculations. The orbital and fitting function exponents
used near the ambient volume of Mo have been listed elsewhere [20], with the exception of
the f-type orbital exponents, 1.1 and 0.5, which were not used in the earlier work. For the
more highly compressed volumes considered here, the exponents of the most diffuse GTOs
were increased as needed to avoid numerical instabilities due to near linear dependencies. In
all cases, the same basis sets were used for a given volume regardless of the crystal structure
under consideration.

All Brillouin zone (BZ) integrations were carried out on a uniform mesh with 145
(150) irreduciblek-points for the cubic (hexagonal) structures, using a Gaussian broadened
(10 mRyd) histogram integration technique. Additional calculations using a sparser mesh
with 72 (73) irreduciblek-points indicate that the calculations are well converged with respect
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to the mesh density. The SCF cycle was iterated until the total energy varied by less than
0.004 mRyd/atom.

4. Results

Nonrelativistic and scalar-relativistic total energies were calculated for fcc, bcc, and hcp Mo
at ten volumes ranging from 41.8414 au to 113.4905 au. Cohesive energies were obtained by
removing atomic energies calculated in a manner consistent with the crystalline calculations.
(For the atomic calculations, the basis sets were augmented with diffuse functions to mimic
the effect of off-site functions on the crystalline calculations.) The resulting cohesive energies
are listed in table 1.

Table 1. Nonrelativistic and scalar-relativistic cohesive energies (Ryd) for fcc, bcc, and hcp Mo at
ten volumes (au).

V fcc bcc hcp

Nonrelativistic

113.4905 −0.503292 −0.531374 −0.500422
108.0000 −0.508402 −0.537694 −0.505725
102.6895 −0.509338 −0.539726 −0.506953
97.5560 −0.505538 −0.536576 −0.503422
92.5965 −0.496454 −0.527502 −0.494297
83.5965 −0.460694 −0.490426 −0.458470
73.1399 −0.371734 −0.396196 −0.369888
62.6877 −0.195846 −0.206556 −0.193548
52.2768 0.137562 0.152764 0.143635
41.8414 0.811176 0.857810 0.819401

Scalar relativistic

113.4905 −0.544010 −0.573812 −0.539869
108.0000 −0.550128 −0.581482 −0.546135
102.6895 −0.551964 −0.584798 −0.548202
97.5560 −0.548858 −0.582910 −0.545398
92.5965 −0.540066 −0.575076 −0.536910
83.5965 −0.504112 −0.539442 −0.501418
73.1399 −0.414154 −0.445640 −0.411685
62.6877 −0.235102 −0.256252 −0.232892
52.2768 0.106946 0.110726 0.112138
41.8414 0.791936 0.829298 0.801422

The zero-pressure properties for each structure were obtained by fitting the cohesive
energies for the six largest volumes in table 1 with a modified version of the universal equation
of state [28]. Table 2 compares the lattice constanta0, bulk modulusB, and pressure derivative
of the bulk modulusB ′ found here both nonrelativistically and scalar relativistically, with results
from a number of other calculations. Experimental room temperature values [29] fora0, B,
andB ′ are listed in table 2 for the bcc structure. A 20 K value is also listed fora0 to allow a
better comparison with the static-lattice theoretical values [30].

Although the zero-pressure properties obtained here are generally consistent with previous
results, the lattice constants are slightly smaller and the bulk moduli are a bit larger. The
reduced lattice constants can be attributed to the very rich basis sets being used here, which
will tend to strengthen the bonding, while the increase in the bulk modulus is a natural
consequence of the reduced lattice constant. Certainly, the lattice constant reduction and
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Table 2. Lattice constants (a0; Bohr), bulk moduli (B; GPa), and pressure derivatives of the bulk
moduli (B ′) for hcp, fcc, and bcc Mo obtained here from nonrelativistic (N) and relativistic (R)
LCGTO-FF calculations are compared with other calculations and experiment. The hcp results
were obtained for an idealc/a ratio.

Method N/R Structure Reference a0 B B ′

LCGTO-FF N hcp Present 5.276 254 3.97
LCGTO-FF R hcp Present 5.261 268 4.09
LCGTO-FF N fcc Present 7.468 250 3.91
LAPW R fcc 13 7.504 247
APW R fcc 16 7.475 256
LCGTO-FF R fcc Present 7.446 269 3.93
KKR N bcc 12 5.91 251
FLMTO N bcc 14 5.97 255
LMTO-ASA N bcc 15 5.948 265 4.38
LCGTO-FF N bcc Present 5.909 279 3.95
LAPW R bcc 13 5.917 291
LMTO-ASA R bcc 15 5.910 248 4.99
APW R bcc 16 5.904 288
FLMTO R bcc 17 5.879 297
FCD-LMTO R bcc 18 5.906 306
LCGTO-FF R bcc Present 5.883 293 4.19
Experiment: 300 K bcc 29 5.948 261 4.46
Experiment: 20 K bcc 30 5.943

bulk modulus enhancement relative to experiment are no larger than would be expected for
an LDA calculation. The theoretical results in table 2 are also consistent with the widely
held belief that relativistic effects are quite small for d-bonded materials, making it difficult
to judge the overall reliability of the scalar-relativistic LCGTO-FF method on the basis of the
zero-pressure properties of Mo. Still, the relativistic shift found here for the lattice constant of
bcc Mo (−0.026 au) is in reasonable agreement with the−0.038 au shift found by Moriarty [15]
using the more approximate LMTO-ASA method.

Figure 1 compares the nonrelativistic and scalar-relativistic bcc–fcc and hcp–fcc structural
energy differences found here with energy differences determined from fully relativistic
FLMTO calculations [19]. Figure 1 reveals four important results:

(a) relativity has a significant effect on the bcc–fcc structural energy difference that initially
increases with pressure;

(b) the scalar-relativistic LCGTO-FF results for the bcc–fcc structural energy differences
are in good agreement with the earlier FLMTO results, demonstrating the ability of the
LCGTO-FF method to resolve a subtle, but important, relativistic effect;

(c) the effect of relativity on the hcp–fcc structural energy difference is negligible; and
(d) the LCGTO-FF and FLMTO results for the hcp–fcc energy difference curves disagree,

with the FLMTO results predicting a small region of hcp stability atT = 0 and the
LCGTO-FF results indicating that there is no region of hcp stability.

The disagreement between the FLMTO and LCGTO-FF results for the hcp–fcc structural
energy difference is an obvious cause for concern and will be addressed first. Since relativity
has little effect on the hcp–fcc energy differences, some other source for the disagreement
must be found. The most obvious candidate is the large difference between the orbital basis
sets used for the two calculations. In particular, whereas the LCGTO-FF calculations included
s-, p-, d-, and f-type basis functions, the FLMTO calculations only utilized s-, p-, and d-type
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Figure 1. The bcc–fcc (circles) and hcp–fcc (squares) structural energy differences for Mo obtained
here with scalar-relativistic (solid curve) and nonrelativistic (dashed curve) LCGTO-FF calculations
are compared with FLMTO results (open symbols) from reference [19]. The reference volume is
104.951 au.

basis functions. Since the hcp structure is the only structure considered here that does not
have inversion symmetry at the atomic sites, it might respond differently to the inclusion of
f-type functions. To test this conjecture, P Söderlind [31] has carried out a set of FLMTO
calculations for fcc and hcp Mo, with f-type basis functions included. Those calculations
indicate that there is no region of hcp stability atT = 0 K, in good qualitative agreement with
the present results. It should be noted however that the hcp–fcc structural energy differences
are too small to entirely rule out the possibility of hcp Mo, especially if relaxation of thec/a

ratio were allowed.
Although the relativistic correction to the bcc–fcc structural energy difference is fairly

small, it significantly delays the onset of the bcc→ fcc phase transition from a relative
volume of about 0.55 to roughly 0.51. This delay in the transition has a rather simple
interpretation. It is well known that pressure-induced structural phase transitions are frequently
associated with a transfer of electrons from states of low angular momentum to states with
higher angular momentum. For example, elemental solids formed from third-row atoms exhibit
phase transitions that can be related to a pressure-induced transfer of electrons from the 3s
state to the 3d state [32]. Since it is also well established that relativity reduces the energies
of low-angular-momentum states relative to high-angular-momentum states, one can readily
deduce that relativity will, in general, tend to delay the onset of any structural phase transition
that is triggered by a reordering of the electron energy bands.

Another feature of the bcc–fcc energy difference curves that can be understood through
the type of analysis given above is the variation of the relativistic correction with volume; see
figure 2. At zero pressure, the relativistic correction is quite small. As the volume decreases,
however, the correction steadily increases, reaching a maximum at a relative volume near 0.5,
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Figure 2. The negative of the relativistic correction to the bcc–fcc structural energy difference of
Mo is shown as a function of the relative volume. The reference volume is 104.951 au.

at which point it begins to decrease. It is known that under pressure the initially fully occupied
5s band of Mo is driven through the partially occupied 4d band [15]. Thus, under pressure, Mo
transforms from a d-bonded material (relatively insensitive to relativistic effects) to a mixed
s- and d-bonded material (with significant relativistic effects) and then eventually returns to
being a d-bonded material (with small relativistic effects). This analysis suggests that relativity
can play an important role in the high pressure properties of materials that are unaffected by
relativity at low pressures.

The bcc→ fcc transition pressure for Mo was obtained both relativistically and non-
relativistically by fitting the cohesive energies for the nine largest volumes in table 1 with
the modified universal equation of state and finding the point at which the enthalpy versus
pressure curves for the two structures cross. The nonrelativistic LCGTO-FF calculations
yield a bcc→ fcc transition pressure of 4.7 Mbar at a relative volume of about 0.55. The
more realistic scalar-relativistic calculations produce a higher transition pressure of 6.6 Mbar
at a relative volume of about 0.51. Since the bcc→ fcc transition has not been observed
experimentally at this time, there are no firm data with which to compare these results.

5. Conclusions

It has been demonstrated here that the scalar-relativistic LCGTO-FF method as embodied in
the program GTOFF produces zero-pressure properties of Mo that are nearly indistinguish-
able from the results of other scalar-relativistic calculations. More importantly, it has been
shown that the LCGTO-FF technique is able to resolve a particularly delicate relativistic
effect—namely, the volume-dependent correction to the bcc–fcc structural energy difference.
It is argued that relativity will tend to delay structural phase transitions that are triggered by
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pressure-induced reordering of electronic states. The current results also suggest that relativity
must be taken into consideration when studying the high-pressure properties of materials even
if they are unaffected by relativity at low pressures, since pressure can alter the basic nature of
the bonding. Contrary to previous theoretical work, the present investigation finds no region
of hcp stability atT = 0. Instead, the bcc structure is found to transform directly to the fcc
structure at a pressure of 6.6 Mbar, for a relative volume of about 0.51.

Acknowledgments

I thank P S̈oderlind for helpful communications and for carrying out a series of FLMTO
calculations testing the effect of f-type basis functions on the hcp–fcc structural phase stability
of Mo. This research was supported by the US Department of Energy under contract W-7405-
ENG-36.

References

[1] Kutzelnigg W 1984Int. J. Quantum Chem.25107
[2] Douglas M and Kroll N M 1974Ann. Phys., NY8289
[3] Hess B A 1986Phys. Rev.A 333742
[4] Jansen G and Hess B A 1989Phys. Rev.A 396016
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